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ABSTRACT

bd Systems (a subsidiary of SAIC) has developed a suite of
embedded relative navigation sensor fusion algorithms to
enable NASA autonomous rendezvous and docking
(AR&D) missions. Translational and rotational Extended
Kalman Filters (EKFs) were developed for integrating
measurements based on the vehicles® orbital mechanics and
high-fidelity sensor error models and provide a solution with
increased accuracy and robustness relative to any single
relative navigation sensor, The filters were tested through
stand-alone covariance analysis, closed-loop testing with a
high-fidelity multi-body orbital simulation, and hardware-
in-the-loop (HWIL) testing in the Marshall Space Flight
Center (MSFC) Flight Robotics Laboratory (FRL).

INTRODUCTION

The NASA Vision for Space Exploration requires an
incteased number of rendezvous and docking wissions
compared to previous NASA architectures with a goal of
autonomous operations. Additionally, AR&D missions will
be required in low lynar orbit, where GPS is unavailable as a
high-fidelity absolute and relative position reference for

both vehicles. The goal of this research was to develop a
unified sensor fusion architecture to blend all available
Sensor measurements into a single optimal state estimate for
use in the vehicle guidance and control systern,

The sensor fusion algorithms accept measurements from a
variety of relative navigation sensors with varying ranges
and measurement types. Radic frequency (RF), light
distance and ranging (LIDAR), and optical-based system
measurements can all be incorporated m the sensor fusion
algorithms. The translational filter uses the Clohessey-
Wiltshire orbital relative motion equations as the core
dynamics in the state transifion matrix. The filters are
augmented to also estimate sensor bizs and scale factor
errors for each individual active sensor in order to fully take
advantage of mmltiple overlapping sensors. The filters were
implemented witht an option to nin a Bierman U-D filter to
cnsure stable numerical performance for extended missions.

Fault Detection, Identification, and Recovery (FDIR} is a
necessary feature of these filters bacause the sensors are
capable of reporting anomalous measurements that could
corrupt the filters’® state estimates if not otherwise handled.
Fanlt detection was implemented using a Chi-Squared test,
whereby measurements that result in innovations that arc oo
large are not incorporated into the state estimate. The filters
also have the ability to recover if their estimate drifts so far
from the measured values that the measured values are all
rejected.

The filfers were first implemented and tested using
covariance analysis to determine the potential for increased
accuracy, The filters were then implemented in the
Simulation Package for Autonomous Rendezvous Test and
Analysis (SPARTAN), a high-fidelity multi-body orbital
simulation developed in MATLAB Simulink to study
AR&D sensor and algorithm technologies, This integrated
simulation allowed the sensor ouiputs to feed realistic



guidance and control algorithms to fully analyze the affects
of navigation accuracy on system performance. The
robustness of the system was analyzed using Monte Carlo
analysis for a variety of dispersed sensor and vehicle
parameters.

The sengor fusion algorithms were also tested using
processor and HWIL testing. To support this testing, the
filters were awtocoded from Simmlink into C-code using
MATLAB’s Real Time Workshop. The filters were
embedded on a PowerPC 750 Single Board Computer
(SBC) mmning VxWorks to verify that computational
performance was suitable for real-time implememtation,
HWIL testing using the filters was performed in the NASA
MSFC FRL in August of 2007. This involved two shott-
range optical prototype sensors making relative position and
relative attitude measurements of a set of docking targets
mounted to a robotic arm that had 3-degree of freedom
{DOF) translational and 3-DOF rotational capability. For
the actual testing in the FRI, the filters were run as a
dynamically linked library called by bdStudio, a
visualization package developed by bd Sysiems that runs in
a Windows environment. bdStudio was used to generate a
pseudo-onboard view of the dockings, as well as a ground
station-like third-person view of the dockings and display
the raw sensor output as well as the filtered estimates.

Preliminary analysis of the filters indicates strong and robust
performance. The open-loop covariance analysis confirmed
that the errors and uncertajnties were behaving as
anticipated and that the filters were able to converge on the
sensor error parameters. The errors were small enough that
the simulated docking would be considered successful
Next, 2 Monte-Carlo analysis verified the closed-loop
system performance of the filters with the guidance and
control algorithms used in SPARTAN for a variety of
dispersed sensor and vehicle parameters. The filters’ errors
were always small enough to allow for a successful docking,
and no harmful interactions with the guidance and control
algorithms were detected, The filters also remained
mumerically stable throughout all of the Monte Carlo runs,
The filter timing performance in an embedded environment
was characterized by runming the filters in YxWorks on the
PowerPC 750, 1t was determined that both filters can
complete one execution in a mean time of 0.0041 seconds
on an IBM750GX. This level of resource consumption
verifies that these filters are credible for real-time
applications in currently available flight hardware. During
FRL HWIL testing, the filters were able to track the docking
targets with acceptable errors through approach trajectories
starting 30 meters from the sensors and ending | meter from
the sensors. While this testing was done iz an open-loop
fashion, the error in the estimate was sufficiently small to
allow for successful docking.

The test-verified embedded relative navigation filters are
excellent candidates for omnboard spacecraft relative
navigation, as evidenced by their increased accuracy relative
to any single sensor, their tolerance to bad measurements,

and their ability to be nm effectively on real-time hardware
platforms, The next step in increasing the technology
readiness level of the algorithm package will be through
closed-loop HWIL testing followed by flight test
oppottunities.

KATMAN FILTER IMPLEMENTATION

The main goal of the filter implementation was fo create the
ability to optimally fuse data from all of the available
sensors into a single state estimate that did not experience
inappropriately large jumps when various sensors were
turned on or turned off. In order to meet this goal, sensor
ervor state esfimaies, in the form of measurement bias
estimates and measurement scale factors were included for
each sensor. This allows for filter innovations due to
measurements from various sensors to be whitened as the
bias estimates approach the correct value (assuming the
sensor noise is Gaussian). A notable side benefit of this is
that during 2 mission phase where two or more sensors are
active, the more accurate sensor will drive the biases and
scale factors of the less accurate sensor closer to the correct
values, thereby performing live calibration of the less
accurate sensor, This newly calibrated sensor is now better
equipped to guide the spacecraft in case of a sensor outage
among any of the other sensors.

Filter States

The states of the translational Extended Kalman filter can be
divided into two groups; those describing the vehicle motion
and those degcribing the sensor errors. The states describing
relative vehicle motion are the relative positions and
velocities of the chaser vehicle with respeci to the target
vehicle, expressed in the target vehicle’s LVLH frame. The
states describing the sensor exrors are one bias state and one
scale factor state for each scalar element of 2 measurement.
The states of the rotational extended Kalman filter can also
be divided in to those describing vehicle motion and those
describing the error states of the sensors, with the angular
scale factor term being a function of range fo target rather
than whole angular value.

General Equations

In the HYDRA Kalman filter implementation, both discrete
linear and discrete extended Kalman filter equations are
used. The discrete extended Kalman filter equations are
provided in Table 1 helow.
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Table 1: Discrete extended equations

@, is obtained from the time-varying state dynamics vector
F as follows (Reference 1):

O, =ef= FIGLF

[, is determined in a similar fashion:
I“‘k =g Bat _ g-l[(sI_B)-l]

For our purposes, ¥, is an identity matrix and the state

process noise W,_, is the same size as the state vector in all
implementations.

Numerical round-off problems can sometimes be
encountered in the calculation of the covariance update.
One solution to this is to use the Joseph algorithm, which
assures positive-definite symmetric covariance matrices
with a greater tendency towards numerical stability. It
utilizes an alternate form of the covariance update equations
as follows:

H: = [I_Kka (j;)]ﬂ_[I—Kka(J_E,:)]T +KkRkKlf.

for the discrete extended Kalman filter. The translational
extended multi-sensor Kalman filter uses the version of the
Joseph algorithm intended for extended Kalman filters.
This was not done in reaction to numerical stability
problems but sitply as a precautionary measure,

Translational Filter
As stated previously, the state vector for the translational
filter is:

X
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governed by the Clohessy-Wiltshire equations [2], contains
the state dynamics for the plant as follows:

[0 o o 1 0o 0]
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@ is the orbital angular rate of the spacecraft defined as

@ =2%7/P whereP is the orbital period of the target
spacecraft. The continuous-time state dynamics matrix F is

then converted to the discrete state transition matrix @

For the Laser Range and the Radio Frequency Interrogator
the relative measurements of the chaser to the target are
Range, Azimuth angle and Elevation angle. The sensor
Range, Azimmth angle and Elevation angle have bias, noise
and scale factor errors estimated in the Kalman fiiter. The

Laser Range Finder and the Radio Frequency Interrogator
have sensor error staic vectors OX, . . 10 estimate the bias
and scale factors on the range, azimuth, and elevation
measurements individually. J&x,,  has the following
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The measurements from the LRF and RFI are assumed fo be
of the form:

z, = Range(1+5R )+ 6R,  +v, where v, is measured Rang



z, = Azimuth(1+ 5 AZ, ) + 6 AZy,, +v, Where v, is measyreX AHBXgh u6ike, +v, where v, is measired XRangenoise
z, = Elevation(1+ 0 EL ;) + OEL,, +v, where v, is meayre (Ee¥¥fipndijsa v, where v, is measured ¥ Rangenoise
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For the extended Kalman filter the measurement equation

has to be lincarized about the current state estitnate, and the

mapping matrix /, and the expected measurements /7, For the extended Kalman filter the measurement equation

have to be computed for each time step. For the Laser has to be linearized about the current state estimate and the
Range Finder and the Radio Frequency Interrogator we mapping matrix K, and the mapping function %, have to

have: .
v be computed for each time step. For the VBGS and the
N ULTOR we have the following:
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R Rotational Filter
The rotational extended Kalman filter uses Euler angles and
The VBGS and the UL TOR sensors provide relative Euler angle rates to estimate the attitude parameters, The
position measurements in the Cartesian LVLH frame instead  state vector for this filter has 24 elements. The first six
of providing range, azimuth, and elevation. Each of these elements of the state vector are the relative Buler angles and
measurements has a bias and a scale factor associated with angular rates. The last 18 states are the sensor error state
it. The VBGS and the ULTOR sensor error state vector estimates. There are six error states per sensor, with each
Sx  has the form & x = [5 x] where the elements channel (yaw, pitch, or roll} having both a bias and a scale
—SEHIOr — Sgnso¥ — factor.
of O x are the range error states:
O X s roli
0X, pitch
ox= cﬂgm x= % plons where x = yaw
X = = £ pl
Y, OX pon 7| voll rate
8Z,,, pitch rate
_cS'ZSJr ] | yaw rate
and Ox,,  isa vector containing six error states for each

The measurements from the VBGS and the ULTOR are

of three sensars, one of which is shown here:
assumned to be of the form:



"roll bias
roll scale factor
_| pitch bias

piich scale factor
yaw bias

| yaw scale factor |

The continuous-time state dynamics matrix for the system is
a 24x24 given as follows:

F = prﬂﬂ! 0
6 F

Sensor

0 0 01 0 O]
0 6 0010
000001
where /7, =
z 00 0O0O0 Q0
0 000 00
0000 0 0
and F,, ., the state dynamics matrix for the sensor error

states, is an empty 18x18 mafrix.

Similarly, the B matrix is a 24x3 giveun as follows:

B — BP!anr
BSenmr

0 0 0O
0 0 0
0 0 0
where B, = 1 0 0
0 1 0
o 0 1]

and Bgepeor 18 80 empty 18x3 matrix.

The discrete versions of these matrices used in the state
update are created using Error! Reference source not
found. and Error! Reference source not found. above,

The system noise matrices (Q1 and Q2) are shown below.
The system noise matrix for the sensor error estimates is an
empty 18x18 matrix. These are concatenated as shown
below to give the entire Q matrix.

0 0 0
109
Q"o .
0 0

where Q1 is related to the process noise caused by
uncertainty in the plant dynamics and Q2 is the
corresponding process noige in the sensor error parameters.

Like the transtational EKF, each sensor has its own series of
3x6 matrices that cottpose {ts mapping mafrix; however,
unlike the iranslational EKF, the rotational EKF only
receives measurements from three sensors, so its mapping
matrix is a 3x24 with an H, ;. and 3 Haeors 28 follows:

Hy =[H pre Hoor)y Honrr)s  (Hpior )5 ]
With
1 00 000
H,e=10 1 0 0 0 0fand
60 01 000
1 R 0 0 ¢ 0O
H,,=t0 0 1 R 0 0fwheeRisthe
0 0 0 0 1 R

estimated tange 10 target.

COVARIANCE ANALYSIS

The goals of the covariance analysis were to verify that the
filter was performing as expected and that the state estimate
values were at or below the anticipated levels. In order to
do this, SPARTAN was used to smulate spacecraft
trajectories and sensor measurements to feed into the filters.
This was done in an open-loop fashion with the filter
outputs not feeding into the gnidance and control
algorithms.

The trajectory used in the docking scenario used for this
analysis starts with the chaser vehicle 600 meters below the
target vehicle, gaining on it at roughly 1 m/s. After it passes
beneath the target vehicle, the chaser executes a bum to
arrive at a point in front of the target vehicle on its V-bar
with a specified, nonzero velocity. Afier arriving at this
point, the relative velocity is damped out and then a
glideslope appreach is initiated. This can be seen in the
figure below.
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Figure 1: Relative Trajectory Plot.

The figure below shows the relative position estimate errors
and uncertaintics, as well as the range errors and
uncertainties. Note that as the scenario progresses and the
distance between the chaser and target vehicles is reduced
(not shown) that the uncertainty and noise are decreased. At
cerfamn distances shorter-range sensors are brought into
range and the uncertainty is reduced drastically. Also note
how around 2500 seconds into the scenario the uncertainty
is switching from the Z axis {R-bar) into the X axis (V-har).
This is because the actual error ellipsoid that the long-range
sensors create is lens-shaped, and that lens rotates through
almost 180 degrees between 2000 and 3500 seconds. This
encompasses the time prior to and during the thrust onto the
V-Bar. Also note that the errors were within the [-sigma
uncertainties shown on the set of axes below the axes with
EITo1s.
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Figure 2: Translational Filter Error and Uncertainty as
a function of time.

The figure below shows the position errors and uncertainties
during the terminal phases of docking. The spikes in the

uncertainty are due to a measurement failing a statistical
acceptance test (described later) and thus not being
incorporated. The Z-axis position estimate has more error
than is anticipated by the uncertainty estimate. This is
becanse the actual sensor noise parameters were set
according to a (Gaussian distribution, and on this particular
ran that noise parameter for that terminal docking sensor
was at a 2.5 sigma value. The range does not go all the way
to zero because the range shown is not the range until
contact occurs, but the range between the sensor and its
target, and as such cannot go completely to zero,
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Figure 3: Translational Filter Error and Uncertainty as
a function of range.

The filter was also able to converge on the bias and scale
factor parameters for the various sensors fairly well using
the orbital dynarmes embedded in the filter and using
measurements from other sensors. In generzl, the filter was
able to converge on the bias parameters better than the scale
factor parameters. Below is a figure showing the simulated
Laser Range Finder biases and the filter’s estimates of these
biases,
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Figure 4: Transiational Sensor Error Parameter State
Estimation.

The relative attitude extended Kalman filter performed as
expected with regard to estimating the relative attitude state
and estimating the sensor biases of the short-range sensors.
Below is a plot of the attitude errors of the terminal docking
phase and the related uncertainties, Although the errors are
not actually less than the uncertainty, this is because the bias
errors onl the sensors are quite large. This filter uses linear
attitude equations becausc it was intended for use in
terminal docking only, where relative angles are near zero
and relative angular rates are very near zero. Hence, there
is no dynamics that would be of use to help the filter
cstimate these biases. In order to estimate the errors on a
sensor, the filter essentially waits for the next more accurate
sensor to turn on,
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Figure 5: Rotational Filter Error and Uncertainty as a
function of range,

Below are shown the simulated bias and the attitude filter’s
bias estimates for the ULTOR visible sensor.
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Figure 6: Rotational Fiiter Sensor Parameter
Estimation.

CLOSED-LOOP PERFORMANCE AND DISPERSION
EVALUATION

The filters were tested in closed-loop fashion with the rest of
the guidance and control algorithms te determine their
stability and identify any negative effects. Dispersion
analysis i a critical tool in system development, since it
provides the ability to assess system performence under
random variation of system parameters and external
influences. This information is crucial in determining
bounds of operation for requirements analysis, for
quantifying the relative risks m the system development,
and in modeling system uncertainty for robust stability
analysis. To perform this analysis, SPARTAN was
augmented with Monte Carlo capability.

It is desired that the dispersion values in this analysis be set
as close as possible to the 3¢ values of the variables’
distribution, The variables were grouped according to 12
different categories: target initial conditions, target mass
properties, chase vehicle initial conditions, chase vehicle
mass properties, main engine parameters, RCS parameters,
LRF seusor errors, RFT sensor errors, VBGS far sensor
errors, VBGS near sensor errors, ULTOR sensor errors, and
chase vehicle controller parameters.

The Monte Carlo analysis was conducted for 520 dispersion
cases. The mission case simulated was CEV docking with
ISS. Using the parallel processing capability, zll of these
simulations were conducted within an 8 hour period. 97%
of the 520 simulations completed the AR&D mission
successfully. Of the simulations that failed, none of the
failures were due to problems related to relative navigation
software. The carpet plot of successful nuns is given in
Figure 7,
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One of the goals of this navigation filter development
project was to end up with filters that were credible for use
on the actual Constellation vehicles. One of the criteria for
that is that the filters must be able to run for extended
periods of time without experiencing numerical stability
problems. To this end, a Bierman filter has been
implemented as an option due to its long term numerical
stability, No numerical stability problems were encountered
in the Monte Carlo testing, possibly due in part to the length
of the simulation runs. Longer duration runs are planned
where numerical conditioning problems may become more
evident.

The Bierman (U-D) factorization algorithm is a vatiant of
the square-root filter and utilizes a decomposition of the P
matrix info a unit upper-triangular matrix and a diagonal
matrix, as the propagation of U and D factors is better
numerically conditioned than traditional Kalman
implementations, Using a vector measurement, the noise
covariance matrix R becomes diagonal, This method,
despite being more complicated to implement and taking a
larger program memory, is known for its fast output. Future
work will look at the comparative advantage of Bierrman
against the traditional methods already utilized.

FILTER PERFORMANCE AS EMBEDDED REAL-
TIME ALGORITHMS

One of the goals of this navigation filter development
project was to end up with filters that were credible for use
on the actual Constellation vehicles. One of the criteria for
that is that the filters cannot consume an unreasonable

1 N P — M i
%ﬂﬂ 2500 2000 15080 -i000 500 0 500
Relative X Position

amount of computing resources. In order to evaluate these
filters with respect to this criteria, the filters were converied
from Simulink and Embedded M-files to C code using
MaiLab’s Real Time Workshop. The autocoded filters were
then compiled for execution in a VxWorks environment on
a IBM PPC 750 GX processor.

The number of filter states was reduced for this part of the
project because the autocoded filters were candidates for
later use on another embedded systern that was resource-
limited. Reducing the number of states was feasible without
altering the execution or structure of the filter because there
were only two sensors scheduled for use in this testing,
instead of five. The mumber of states was thus reduced from
36 to 18 for each of the translational and rotstional filters,
dropping six states per absent sensor,

The compiled filters were then fed with artificially
gencrated measurements to allow them to run nominally.
The timing analysis indicated that for both of the filters to
execute one time took 0.0041 seconds. This represents a
very reasonabie amount of resource consumption. Also, the
translational filter may not need to be run at as fast a rate as
the attitude filter, thereby artificially reducing resource
consumption.

REAL-TIME TESTING IN THE FRL

Testing occwred in the Flight Robotics Lab on Monday,
August 27, 2007 through Friday, August 31, 2007. The
FRL’s Dynamic Overhead Target Simulator (DOTS) is an
overhead, eight degree-of-freedom gantry in the FRL used
to positicn the sensor targets. The movements of the arm
correlate to a simulated trajectory flown by the target
vehicle in an autonomous rendezvous and docking
maneuver. The gantry is equipped with encoders on each
axis to provide the true position and orientation of the
sensors. The testing used an Advanced Video Guidance
Sensor Block II and an ULTOR passive optical correlator
sensor system, both developed by Advanced Optical
Systerns.

bd Systems implemented Extended Kalman filter algorithms
to combine the measurements from the multiple HYDRA
sensors into a single, reduced-noise, optimal estimate of the
relative state of the sensors and docking targets. The
Extended Kalman filter algorithms used during testing were
a modified version of the filters in SPARTAN, the
simulation package for autonomous rendezvous test and
analysis developed by bd Systems. SPARTAN is a high-
fidelity, on orbit simulation tracking multiple 6 degree-of-
freedom vehicles designed to support WASA’s new vision
for space exploration. SPARTAN is used to test AR&D
sensors and guidance, navigation, and control (GN&C}
algorithms in a closed-loop fashion.

The Extended Kalman filter used for testing reduced the
nurnber of input sensors from the SPARTAN version with



five sensors to two sensors—the AVGS and ULTOR. Since
the trajectories to be flown in the FRL were not necessarily
based on orbital mechanics, the filters were further
simplified by eliminating the modeling of orbital dynamies
in the filter state fransition mairix. The Simulink block
diagram for the filter was then converted into C code
utilizing the Mathworks Real-Time workshop. This C code
was built into a library that was called repeatedly by
bdStudio throughout testing.

One version of the C implementation of the Kalman filters
was compiled, run, and tested on an embedded computer
{PowerPC 750) minning VxWorks as the real-time operating
system. The executed code on VxWorks matched the
outputs from the code executed on a laptop runming
Windows and the execution speed was acceptable.

Measurement Acceptance Testing

Omne part of making the filters credible for use in a space-
flight environment is making the filter robust to very
erroneous or scrambled/meaningless measurements. A
Kailman fitter that does not do any measurement acceptance
testing can have ite state estimate greatly degraded by a
single corrupted measurement or by a handful of very bad
measurements. Excessively noisy measurements can also
degrade the filter’s performance by causing the estimate to
jump around more than it should. The filter can take a long
time to recover the estimate 10 its previous accuracy.
Testing each measurement for its likelihood of being 2 valid
measurement iz therefore beneficial. The standard method
for performing this is through analysis of each
measurement™s Chi-Squared statistic. The statistic Is
caleulated by

22 - 3: *[Hkﬂc_Hg +Rk]_] *e,
M

where the innovation 8{ is given in Error! Reference

source not found, and should be interpreted as the
difference hetween the actual measurements and the
expected measurements. Note that m is the length of the
measurement vector for that particular measurement. For
the sensors described in this report, m = 3 for all of the
Sensors.

After the Chi-Squared statistic is calculated for a
measurement, it is then compared to the then-current
maxinum allowable Chi-Squared value, If the calculated
Chi-Squared value is greater than the maximum allowable
value, the measurement is not used to update the filter’s
state estimate,

If the semsor’s etror properties are assumed (Gaussian, the
Chi-Squared test can theoretically be expected to cull a
predictable percentage of the regular measurements that
simply have larger noise components; however, in practice,
the Chi-Squared distribution of the actual measurements

rarely matches the theoretical distribution. Therefore, the
maximum allowable Chi-Squared valis must be set through
observation of the filter in operation.

It can be seen in Figure 8 below that a large number of the
measurements had Chi-Squared values greater than the
maximum allowed value. This was caused by the ULTOR
being assigned a much larger noise parameter than was
reported to the filter through the R matrix. Theoretically,
the maximum allowed Chi-Squared value of 6 should reject
just under 1 % of the measurements if the measnrement
errors are unbiased and have the same variance as is
reported in that sensor’s R matrix. The figure shows that the
LRF’s statistical behavior is close to expected prior to the
ULTOR becoming active, It is then cvident that the
ULTOR measurements are more noisy than anticipated. In
this implemmentation of the Chi-Squared measurement test,
the measurements whose Chi-Squared values are above the
threshold of six would not have been used to update the
state estimate.
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Figure 8: Chi-Squared test for measurement acceptance

Recovery

Under certain circumstances, a Kalman filter’s state estimate
can be led off course by a series of bad sensor
measyrements. It is important that the filter be able to
recover once good measurements are reintroduced,
Unfortunately, the Chi-Squared based measurement testing
acts to make the filter reject the new good measurements
because the filter has converged on the measurements of the
bad sensor. When the malfanctioning sensor is turned off,
the filter must realize that it is no longer receiving
measurements that agree with its estimate and make efforts
10 re-comnverge.

This is implemented by having the filter track how many
recent filter iterations have resulted in all available
measurements failing the Chi-Squared test. If a sufficient
number of iterations have had all bad measurements, then
the maximum allowable Chi-Squared value is increased. If
the filter keeps receiving only more measurements that end
up being rejected, the maximum allowable Chi-Squared



value is increased further. If this gradual increasing of the
maximum allowable Chi-Squared value fails to let the filter
converge after set number of iterations, the filter raises the
maximum-allowable = Chi-Squared value back to
initialization levels, while maintaining the current state
estimate and state covariance matrix.

An example of this can be seen in Figure 9 below. It should
be noted that the filter had to be configured extremely
poorly to cause this degree of divergence. Nevertheless, the
ability to re-converge is seen at 3500 seconds and at 4900
seconds.  Around 5100 seconds, the filter experiences
enough bad measurements that it starts to re-initialize.
Unfortunately, the poor filter configuration that had to be
used to test this filter feature does not allow the filter to re-
converge after the re-initialization, and a series of re-
initializations are then executed in rapid succession.
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Figure 9: Filter recovery from faulty state estimate

Measurement Drop-outs

The Kalman filter implementation developed for this
application is robust to two types of measurement drop-outs,
and which of these is more relevant depends on the
implementation in the code controlling the system. The first
type of drop-out is described as a sensor measurement
sitting in a buffer waiting to be read by the filter until it is
replaced by a new sensor measurement. The problem is that
the filter may execute several times before the sensor
measurement is updated. The filter is robust to this by not
allowing the same measurement to be used to update the
state estimate more than once. The second type of
measurement drop-out is described as the sensor
measurement in the buffer being replaced by zeros when the
filter reads the measurement or when no measurement is
available. A measurement of this type is also detected by
the filter as invalid and is not used to update the state
estimate. This makes it simple to communicate to the filter
that a sensor has been turned off; zeros can be written to the
measurement buffer or the previous measurement can be left
in the buffer to wait for an updated measurement.

bdStudio is an internally developed environment for visual
representation of models and simulations. It has the ability
to load 3D models from commonly used CAD applications.
In addition to loading 3D models, bdStudio can add 3D
visual effects caused by the lighting from the sun and can
load a mapping of the stars. The position and orientation of
the 3D models in bdStudio are modified by Python scripts.
The power of Python scripting enables various applications
to control the behavior of the models, such as
Matlab/Simulink, TRICK, MAVERIC, or other simulation
programs. A sample view of bdStudio can be seen in Figure
10.

Figure 10: bdStudio Screenshot

Test Process

The DOTS gantry was used to maneuver the AVGS and
ULTOR sensors along predefined trajectories relevant to
AR&D missions. The encoder data from the gantry
provided the truth data regarding the positioning of the
sensors. The data generated by the two AOS sensors was
transmitted to bdStudio to graphically display and pass
through the Extended Kalman filters in real-time. All data
was recorded to have available for further post-processing
analysis.

AOS transmitted raw sensor data over a UDP Ethernet
connection and a Python script had been written to listen for
data on UDP port 6768. Upon receiving the data, the script
would pass the raw sensor information off to the extended
Kalman filter and update the graphical representation
accordingly.

Preliminary Test Results

A preliminary analysis of the testing results showed the
testing accomplished its primary objectives, and some
insight was gained into the areas to focus on in future work.
The Extended Kalman filters performed well. The filters
had been tuned to values that were correct for use in
SPARTAN, the autonomous rendezvous and docking
simulation developed by bd Systems. This tuning includes
the initial state covariance matrix, the system covariance
matrix, and the measurement covariance matrices. These
tuning parameters, however, were not highly accurate for
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the FRL testing for several reasons. The measurement
covariance matrices were set ¢ priorf based on error
characteristic estimates provided by AOS before any testing
had commenced. Hence the certainty in those values was
low. Additicnally, the system covariance matrix was based
on SPARTAN simulations in which the main perturbations
were caused by thruster firings that decreaged in magnitude
as the chaser vehicle approached the target vehicle.

A preliminary analysis reveals the filters reduced the noise
from the sensors. An example of the effectiveness of the
filters in smoothing the data from the AVGS alone is
displayed in Figure 11. The data in this figure was recorded
during a trajectory sirulation of the DOTS in which the
gantry moved the sensor targets towards the sensors. Note
that truth data from the DOTS was not available in time for
this quick-look analysis of filter performance; this data will
of course provide the ultimate measurement of the
improvements provided by the Kalman filter algorithms,
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Figure 11: Downrange distance vs. time

The data sampling rate for the filters proved sufficient such
that acceleration of the sensor targets did not cause a
response lag by the filter. As seen in Figure 12, the red line
representing  the filtered data responded nearly
simuyltancously as the change in the raw data.
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The filter also successfully combined the measurements
from the AVGS and ULTOR, as seen in Figure 13. The
filtered data will be more accurate after further examination
of the sensor noise characteristics and the covariance
matrices are tuned.
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Figure 13: AVGS and ULTOR data combined by the
Kalman filter

As mentioned earlier, the noise characteristics of the sensors
were not well known when the filters were tuned before
testing. This lack of knowledge regarding the noise
characteristics was apparent for the AVGS, which exhibited
larger attitude errors than previously anticipated. These
large errors cause two effects: the first result is the
suboptimality of the filter since the estimate of the noise
differs significantly from the actual noise. The second
effect is the rejection of valid sensor data as a consequence
of the Chi-Squared testing being performed on the
measurement testing. Since the AVGS’ attitude estimates
were more noisy than anficipated, a much larger-than-
anticipated portion of the measurements were rejected. This
data rejection resulted in less confidence in the estimates of
the attitude filter and occasionally losing track of attitude
information. Because the filtering algorithm reduces data
selectivity when the frequency of measurement rejection
increases, the filters do re-acquire a tracking of attitude
information. It was observed that the current filtering
algorithms are tuned to re-acquire too slowly once lost.
This prolonged re-acquire time will be addressed in future
updates to SPARTAN.

Another problem encountered during testing was error
accurnulation (about 20 degrees in 15 minutes) in the yaw
axis of the attitude Extended Kalman filter due to its error
states.  This inaccuracy only occurred during normal
operation when attitude measurements were accepted from
the AVGS alone. The AVGS yaw scale factor error state in
the Kalman filter was being excited. This scale factor is
associated with distance, not the angle. After a preliminary
investigation, it appears that this error growth is caused by
the highly correlated noise produced by the AVGS.



An example of this correlated noise is shown in Figure 14
below. This figure contains approximately 2000 data points
that were collected consecutively while the DOTS was
stationary. The correlation is less evident in the Yaw-Z axes
than other axes, like the Pifch-Z axes; vet the . Yaw-Z
coupling is believed to cause the observed error
accumulation due to the structure of the filter. As noted
previously, this problem occurred only when the ULTOR
was producing unacceptable attitude measurements. A
temporary solution for this problem was devised and
implemented, This solution involved locking the aftitude
scale factor errors at zero, whereas the handling of the bias
errors was unchanged as they compensate for any difference
in alignment of the sensors or docking targets. This change
was implemented near the end of the testing period, and the
underlying conditions that caused the problem were not
encountered again (ULTOR not functioning).
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Figure 14: Correlated noise from the AVGS
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